
8 wilmott magazine

 In this article we present a new approach for automatic adjoint di!erentiation
(AAD) with a special focus on computations where derivatives ∂F(X)

∂X are

required for multiple instances of vectors X. In practice, the presented approach
is able to calculate all the di!erentials faster than the primal (original) C++
program for F. Major application areas are:
• Gradient methods for optimization problems, including global model cali-

bration, speech recognition, deblurring of images and machine learning in
general.

• Derivatives of mathematical expectation.
• Pathwise sensitivities of stochastic di!erential equations.

Code transformation vs. operator overloading
Currently, two main approaches are used for the AAD tools:

• Code transformation (CT). Analyses the computer program which imple-
ments function F to produce a code of the adjoint di!erentiation (AD)
method.

• Operator overloading (OO). All mathematical operations are overloaded in
such a way that the information about a computational graph of F is saved in
the data structure called Tape.1 Tape is used a"erwards to process the back-
ward pass of the AD method.

#ere are rather succesful CT AAD tools, however, they limit the available language
features and make the build system more complex. #e di$culty in building such a
tool is further reflected in the fact that there is currently no CT AAD available for
C++. #e OO approach usually demonstrates weaker speed performance due to a
runtime overhead in each iteration. Let us enter into more details at this point.

Consider a schematic processing of multiple samples Xi using a standard OO
AAD library:

Loop i =0.. N −1
 BeginTapeRecording () ;
 Y [i] = F (X [i]) ;
 StopTapeRecording () ;
 dX [i] = Reverse (dY [i] , tape) ;
Next i ;

Each overloaded operator collects information on valuations, a"er which the second

backwards pass updates the adjoint variables. #is approach comes with a number
of disadvantages:

• OO or/and tape interpretation runtime overhead for each iteration.
• Multithreading is only possible if the original function F(X[i]) is thread-safe.
• Relying on the compiler for CPU vectorization of a scalar primal function

means that vectorization is used very sparsely.
• F() may perform unnecessary operations that don’t depend on X, and yet are

executed at each iteration (e.g. mathematical operations, virtual function calls,
dictionary lookups, etc.).

• Additional memory is required to store the Tape data structure. Its size is pro-
portional to the number of operations of the primal function F, which may be
prohibitive in some cases.

OO × CT
Our innovative idea is to cross2 both approaches, namely to use the overloaded
operators to autogenerate an AD version of the primal function at runtime. #e
created AD functions can be used for di!erent Xi instead of performing the classic
OO AAD approach on each F(Xi).

During the first run of the original function, every overloaded function – or
operator – will generate instructions for a forward and reverse AD pass. For in-
stance, consider the function f(a, b, c) = a * b + c. #e first column of Table 1 lists
the consecutive calls of atomic valuations during the execution of the function
f(a, b, c).

Table 1: Construction of Forward and Reverse AAD functions
Valuation → Forward() →Reverse()
Initialization v0 = a; v1 = b;
Initialization v2 = c;
operator * v3 = v0 * v1; d1 += d3 * v0;

d0 += d3 * v1;
operator + v4 = v3 + v2; d2 += d4;

d3 += d4;
Initialization f = v4;
Initialization d0 = 0; d1 = 0;
Initialization d2 = 0; d3 = 0;

AAD: Breaking the Primal Barrier
Dmitri Goloubentsev and Evgeny Lakshtanov present a new, speedier approach for AAD.

wilmott magazine 9

MATHLOGIC

Concatenated entries of the second column of Table 1 form the body of the forward
pass, while the body of the reverse pass is formed by the entries in the third column
in reverse order:

void AD_Function
 (double a , b , c ,& f ,& d0 ,& d1 ,& d2 , d4) {
double v3 , d3 (0) ;
v0 = a ; v1 = b ; v2 = c ;
v3 = v0 * v1 ;
v4 = v3 + v2 ;
f = v4 ;
// Reverse
d2 += d4 ;
d3 += d4 ;
d0 += d3 * v1 ;
d1 += d3 * v0 ;
}

Now all di!erentials of the function f and its value at the point (a, b, c) can be
computed by calling

double d0 (0) , d1 (0) , d2 (0) , d4 (1) , f ;
AD_function (a , b , c , f , d0 , d1 , d2 , d4)

Within the proposed framework, the OO is used for only one sample X, a"er which
the resulting program can process multiple instances of input data. Let us list the
immediate benefits of this approach:

• Unlike the classic OO AAD, the AD function does not change from one
iteration to the next. Hence, there is no OO or tape interpretation runtime
overhead per Xi sample.

• #e AD function is completely segregated from the user program. All user
data are encapsulated within the AD function, and its memory state is limited
to vectors v and d. #us, multiple samples of X can be processed safely in the
multithreaded mode.

• #e AD function can be generated to consistently utilize native CPU vector-
ization to process 4(8)-double chunks of user data (AVX2\AVX512 speed-up
×4–×8).

• Highly e$cient (i.e. operations that don’t depend on X are not included in the
constructed AD function).

• Although additional memory is also required to store the AD function, its
code remains static and can be shared between CPU cores.

Combining all the stated benefits, one can achieve a fantastic performance of 0.4 at
one core, compared to the original program implemented using a standard double
arithmetic. For anybody who wishes to play around with this, we have prepared a
“prototype” C++ implementation available at www.matlogica.com free of charge.
#is prototype implementation is simplified and cannot work e!ectively with large
computations. In addition to a two-pass compilation, the relative compilation time
and volume of memory involved are unacceptable for practical use.3 Part of the rea-
son for this is that the size of the AAD functions is proportional to the tape – that
is, to the linearized (unfolded) version of the primal algorithm. Below we discuss
how we can address these drawbacks.

A prototype C++ implementation
#e code of the prototype library is short and self-explanatory. Nevertheless, we
found it reasonable to provide some comments in case it needs further clarification.
According to the canonical AD, all variables can be distinguished by their roles
as inputs, intermediates, or outputs. #e header file NaiveAADLib.h defines
the active class dagdouble, which transforms each double variable into a node of a
future calculation directed acyclic graph (DAG):

class dagdouble {
public :
 dagdouble () {}
 dagdouble (const double & val ,
 bool isInput = f a l s e)
 : val (val) {
 indx = getNextVarCounter () ;
 i f (! isInput) {
 aadAssignConst (indx , val) ;
 } else {
 inputIndex . insert (indx) ;
 }
 }
 dagdouble (const dagdouble & other) :
 val (other . val) {
 indx = getNextVarCounter () ;
 aadAssign (indx , other . indx) ;
 }
 dagdouble & operator =
 (const dagdouble & other) {
 val = other . val ;
 indx = getNextVarCounter () ;
 aadAssign (indx , other . indx) ;
 return * this ;
 }
 void markAsOutput () {
 outputIndex . insert (indx) ;
 }
 double val ;
 int indx ;
};

As an example, we supplied an overloaded version of the multiplication operator.
Here, we provide only the scalar version of the code. For the vector version, the
reader is encouraged to consult the prototype library source code.

dagdouble operator *(const dagdouble & a ,
 const dagdouble & b) {
 dagdouble res ;
 res . val = a . val * b . val ;
 res . indx = getNextVarCounter () ;
 aadMult (res . indx , a . indx , b . indx) ;

10 wilmott magazine

MATHLOGIC

 return res ;
}
void aadMult (int res_indx , int a_indx ,
 int b_indx) {
 stringstream fstr , rstr ;
 i f (codeVersion == ScalarCode) {
 f s t r << ” v ” << res_indx << ”=” << ” v ”
 << a_indx << ”* v ” << b_indx << ”;”;
 rstr << ” d ” << a_indx << ”+=” << ” d ”
 << res_indx << ”* v ” << b_indx << ”;”
 << ” d ” << b_indx << ”+=” << ” d ”
 << res_indx << ”* v ” << a_indx << ”;”;
 }
 aad_func_fwd . push_back (f s t r . str ()) ;
 aad_func_rev . push_back (rstr . str ()) ;
}

It creates a new variable (getNextVarCounter()) and writes the correspond-
ing code of the forward and reverse passes (applying aadMult()).
#e distribution contains a basic example main.cpp where the library’s function-
ing is carried out by defining a preprocessor variable �GH¿QH�86(B*(15$7('B
$$'B)81&7,21. Depending on its value, the user program either generates a file
which contains a newly created AD function or uses the earlier generated one.

#e included synthetic benchmark test (example.cpp) produces the results
shown in Table 2.

Table 2: The prototype library benchmarks using clang++
Absolute time (ms) Relative factor

 Primal 83 1
AVX2 Adjoint 64 0.73

AVX512 Adjoint 39 0.46

All of the aforementioned disadvantages of the prototype approach can be ad-
dressed by generating a binary code directly from OO. #is idea was implemented
in the AAD-Compiler by MathLogic Ltd.

Just-in-time AAD-Compiler
#e just-in-time AAD-Compiler (patent pending) is a professional version of the
prototype library. It represents a completely enabled OO AAD library and o!ers
the following features:

• Optimized machine binary code generation optimized for both runtime per-
formance and quick code generation.

• Streaming compilation.
• Incremental checkpointing.
• Proprietary AD code-folding compression.
• Support for multiple platforms and C++ compilers.
• Support for AVX2 and AVX512 vectorization.

• Enables multithreaded valuations even when underlying user program isn’t
multithread safe.

#e AAD-Compiler has been tested and documented extensively. Licensing terms
distribution can be found at www.matlogica.com.

AAD-Compiler speed-benchmark results
#e benchmark results for the AAD-Compiler are based on tests of di!erent na-
ture, including random synthetic tests, previously published tests such as LW, Toon,
or GMM, as well as standard (nancial models like the linear mixed model (LMM)
or stochastic volatility calibration [1, 2, 4].

#e first test we consider is based on the open-source benchmark from [2]. #e
authors test various AAD tools for the Gaussian mixed model (GMM) with 2.5M it-
erations and get the results (absolute time of adjoints in seconds) as shown in Table 3.

Table 3: Absolute time of adjoints for GMM model from [2]
#Variables 5.36e+4 4.29e+5

Manual 3.89e+2 6.16e+3
Finite di!erence
Adept C++ 4.09e+3 3.99e+4
ADOLC C++ 1.04e+4
Ceres C++
Tapenade C 1.32e+3 1.59e+4
Di!Sharp F#
MuPAD Matlab • •
Julia-F Julia
Julia-F (vect) Julia • •
Autograd Python
#eano Python • •
#eano (vect) Python • •

Note: #e bullet symbolizes that a tool crashed and no entry means that a tool did not finish in
the time limit. Only tools that could compute at least one problem instance are shown.

We execute the Adept and AAD-Compiler versions of the GMM with 429,000
arguments and 2.5M iterations and get the absolute time of adjoints (in seconds) as
shown in Table 4. #e AAD-Compiler has an optionally activated code compressor,
so both cases are presented.

Table 4: GMM benchmark using AADC and Adept
Tool Compressor AVX2 AVX512
Adept — 2.89e+4 N/A
AADC On 1.3e+3 1.17e+3
AADC O! 2.86e+3 2.86e+3

Note that the huge number of di!erentials required (0.5M) makes the GMM a
memory-bound problem and memory bandwidth is almost maxed out at AVX2.

wilmott magazine 11

MATHLOGIC

For smaller-sized problems, performance scales well with the AVX vector size.

AAD-Compiler relative time of adjoints for
real-world models
Table 5 demonstrates the relative time of the full gradient to the execution time of a
primal algorithm.

Table 5: Relative time of adjoint execution to primal
Model AVX2 AVX512
Toon 0.25 0.2
Heston 0.37 0.22
LMM 0.35 0.21

#e Toon benchmark is assumed to run over multiple input data.
#e behavior of the relative performance time based on number of CPU cores can
be found in Table 6.

Table 6: Relative time of LMM adjoints using multi-thread mode
LMM 1 Core 4 Cores 8 Cores
AVX2 0.35 0.095 0.05
AVX512 0.21 0.06 0.035

AAD-Compiler relative compilation time for various
real-world and toy models
From Table 7, one can conclude that the compilation time is equivalent to around
400 executions of the primal algorithm.

Table 7: One-time cost of adjoint functions construction
Model Relative compilation time
Heston 970
LMM 650
GMM 700
Toon 240

AAD-Compiler memory-benchmark results
For memory benchmarks we also used the conventional Lax and Wendro! (LW)/
Toon tests from [1], as shown in Table 8.

Table 8: Memory use for various public benchmarks
Tool Compressor LW Toon GMM
Adept 3MB 24.5MB 23MB
AADC ON 42kB 11.5MB 7MB
AADC OFF 16MB 59.5MB 15MB

AADC’s values are normalized to a single sample. To obtain the real memory con-
sumption, one needs to multiply the values by an AVX vector length.

Forward function
#e forward function is useful on its own and constitutes a vectorized replication
of the primal algorithm. Similar to the complete AD function it is multithread safe,
even if the primal algorithm is not. #is replication proves extremely useful if one
wishes to use (nite di!erences, or just accelerate any complex computations. Given
the current trend in using multiple CPU cores to accelerate computations, this
feature is useful in its own right.

Acknowledgments
Evgeny Lakshtanov is partially supported by Portuguese funds through the
Center for Research and Development in Mathematics and Applications and
the Portuguese Foundation for Science and Technology, within project UID/
MAT/0416/2019.

Dmitri Goloubentsev has 15 years of combined experience in model development work-
ing on C++ quant libraries. He worked as a Senior Quant Analyst in Interest rate derivatives
and played a leading role in delivering XVA solution at a major Canadian bank. Prior to
focusing on AAD, he was responsible for construction of SIMM/MVA model. Dmitri earned
his degree in Maths and Applied Maths from the Moscow State University.

Evgeny Lakshtanov completed his PhD in Mathematical Physics in 2004 at the Moscow
State University. His interests cover a wide range of applications including Statistical
Physics, Game Theory and Inverse Problems for PDEs. He currently serves as a Principal
Investigator at the University of Aveiro, Portugal. His expertise in gradual perception of
importance of the AAD for inverse problems led him to become an external research con-
sultant at MathLogics LTD.

ENDNOTES
1. Its choice depends on a concrete AAD tool.
2. Not to be confused with AAD of the mixed type, where the tool does an analysis first
and then takes the decision on what approach should be used in each particular situa-
tion.
3. See the relative compilation time benchmarks for prototype and professional AAD
compilers.

REFERENCES
[1] Hogan, R. J. 2014. Fast reverse-mode automatic di"erentiation using expression tem-
plates in C++. ACM Transactions on Mathematical Software (TOMS) 40(4), 26.
[2] Srajer, F., Kukelova, Z., and Fitzgibbon, A. 2018. A benchmark of selected algorith-
mic di"erentiation tools on some problems in computer vision and machine learning.
Optimization Methods and Software 33(4–6), 889–906.
[3] AAD-Compiler prototype library. https://github.com/matlogica/aadc-prototype.
[4] Goloubentcev, D. and Lakshtanov, E. 2019. Remarks on stochastic automatic adjoint
di"erentiation and financial models calibration. arXiv preprint 1901.04200.
[5] AAD-Compiler by MathLogic Ltd. www.matlogica.com.

